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Example - Picking Hyperparameters
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Designing Deep Neural Networks
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AFull Convolutional Neural Netwaork [LeMet)

Validation accuracy is a function of hyperparamters
e |earning rate, regularizations
e batch size, number/size of layers, convolution sizes

e Nonlinearity, Loss function



Example - A/B Testing

Tuning features of an Advertisement
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Click rates are a function of Advertiser's choices.

e Target Consumer Demographics and Interests

e Characteristics of what is displayed



Example - Gene design

Choosing Regulatory Sequences for Genetic Engineering
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Example - Gene design

Choosing Regulatory Sequences for Genetic Engineering

TATA-binding

nucleosome lac repressor DNA protein/ RNA polymerase
(laoi) 7 (1lbh+1efa) polymerase transcription (1i6h)

(1tau) factor 1B

topoisomerase

o b catabolite gene (1ej9)
nucleosome activator protein
I
(1aoi) (1cgp) 10 nm
ribosome chaperonin GroEL/ES
(115f+1jj2) EF-TU  transfer  glutamyl tRNA
o (1ttr) RNA synthetase
: -‘.“?{‘h" ' (4tna) (Teuq)

$ <

Transcription rate is a function of DNA sequence

e regulatory motifs

o stability signals

Gonzalez, Javier, et al. "Bayesian optimization for synthetic gene design." arXiv preprint arXiv:1505.01627

(2015).



How do we perform optimization?

We can use grid-search
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How do we perform optimization?

Why does grid-search fail?
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Why does grid-search fail?

e How do we pick the interval?

o What if we are in a high dimensional space?

o The number of grid points will increase exponentially with
the number of dimensions, O(c")

o Maximum distance between points increases as v/ D, so
points need to be closer together.

o O(c" % 2V™)



How do we perform optimization?

Why does grid-search fail?

e How do we pick the interval?

o What if we are in a high dimensional space?
o The number of grid points will increase exponentially with
the number of dimensions, O(c")

o Maximum distance between points increases as v D, so
points need to be closer together.

o O(c" % 2V

e What if there is noise?



How do we perform optimization?

By being Bayesian!



How do we perform optimization?

By being Bayesian!
e Propose p(f)
e We can work with uncertainty and noise

e Make smarter choices about next points to query

e Use information from other problems to inform priors

Hopefully, we get a good idea of the space with far less than an
exponential number of points
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What is Bayesian optimization?

The goal of Bayesian optimization is to solve optimization problems
of the form:

x,= arg max f(x),
xcX

where f is often a nonlinear and non-convex function over a domain
X.

Assume that f is a black-box function - we can query it at any point
but its derivatives are unavailable.



General algorithm



General algorithm

Algorithm 1 Bayesian optimization

Input: a black-box function f
1: forn=1,...,N do
2: select x,, = arg maxycy Qp_1(X)
3: query f at x, to obtain vy,
4: augment data D,, = D,,_1 U {(Xn,¥n)}

return Xy = arg maxyecx pn(X)
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1. Probabilistic framework

(i) - POLR(E)
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Two ingredients

1. Probabilistic framework

p(f|D) =
2. Acquisition function
U: R

a(x; D,) =K

p(D|f)p(f)
p(D)




A Concrete Example
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e How do we pick the next point?

e We need a prior over functions
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Gaussian Processes

The Gausian process provides a distribution over functions, f : X — R
f ~ GP(po, k)

forx := (z1,x2, ..., xn), £ = (f(x1), f(2z2), ..., f(zn))
flx ~ N(m, K)

where m; = po(x;) and K; ; = k(z;, ;)

Often we have noisy observations y := (yl, Y9y oee,s yn)

ylf, 0" ~ N(f,o°T)



Gaussian Processes

The posterior predictive distribution at an unseen point, x,,1 is Gaussian.

Yn+1 N(:un(wn—l—l)a Un($n+1)2)

The predictive mean and variances have a closed form.

pn (Tns1) = po(Zni1) + k(zn1)" (K + 0*I) ' (y — m)
Tp(@ni1) = k(Tni1, Tng1) — k(@ni1)" (K 4 0I) ' k(2p41)

where k(z,,+1) is a vector of covariance terms with other observations.



Gaussian Processes

We fit a Gaussian process, picking hyperparameters by maximizing

marginal likelihood.
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Acquisition Functions

Probability of Improvement

*

apr(z;Drn) = p(fr(z) > y*) = (I)(unogf()w_)y )
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Bayesian Optimization in Action
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Bayesian Optimization in Action
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Acquisition Functions

Expected Improvement (El)

ag1(z|Dn) =By pyp, o) (2, Y)]
where I(z,y) = (y — y*)l|y > y*]

= (ttn () — y*)B(E5E) + 0, (2) (L HE)

fix)




Acquisition Functions

Upper Confidence Bound (UCB)
aycs(Z|Dn) = pn(x) + Bron(T)
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Information theoretic approach

Entropy search

Consider posterior over the unknown maximizer:
p(x4|Dp).

We aim on reducing the uncertainty in the location of X,:

g (x) 1= H [p(%./Dn)] —Ep(y ,.0[H [p(x*| DU {x, 5})]]



Predictive Entropy Search

We can take advantage of the symmetry of the mutual information
between x, and v, i.e:
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Predictive Entropy Search

We can take advantage of the symmetry of the mutual information
between x, and v, i.e:

aps(x) = H[x.| — H[x.|]y] = I(x.;y) = I(y;x:) = Hly|] — Hly[x,]

This leads to the new form of the acquisition function:

apgs(X;Dy) := H [p(y|Dn, x)| —Epx,ip,) [ H [P(Y| D,y x,%4)]]



Sampling from p(x,|D,,)

We will use Monte Carlo approximation to compute the expectation.
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Sampling from p(x.|D,,)

We will use Monte Carlo approximation to compute the expectation.

A natural approach is to produce sample from posterior:

p(f|Dy)

and maximize the function f to find x,.

However, this would cost (’)(mg) where m is the number of function
evaluations.

Thus, we need the analytic approximation of f.
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As a consequence of the Bochner's theorem every stationary kernel k
has an associated normalized spectral density p(w) and you can
show that:
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Sampling from p(x.|D,,)

As a consequence of the Bochner's theorem every stationary kernel k
has an associated normalized spectral density p(w) and you can
show that:

Tx + b) cos(w' x' +b)]

k(x,x') = 2aE,(wp)[cos(w
T
~ ¢(x)" ¢(x')
We approximate the Gaussian process prior for f with a linear model:

f(x) ~ $(x)"0
where 8 ~ N (0,1).



Sampling from p(x,|D,,)

As a consequence of the Bochner's theorem every stationary kernel k
has an associated normalized spectral density p(Ww) and you can
show that:

k(x,x") = 20K,y p [cos(w' x + b) cos(w' x’ + b)]

~ ¢(x)" p(x')

We approximate the Gaussian process prior for f with a linear model:

f(x) ~ ¢(x)"6
where 8 ~ N (0, 1). This can be maximized to obtain:

x\= arg max £ (x).
xeX



Approximating p(y| Dy, X,Xx)
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Approximating p(y|D,,, X, X, )

Let's note that:

p(y] Dy, x,%.) = / p(y] £ (%))p(f (%) [ Drx. ) ()

If only we wouldn't condition on X...
To circumvent the difficulty, we introduce the following constraints:

1. X, is only a local maximum,
2. f(x4) is larger than past observations,
3. f(x) is smaller than f(x.).



Approximating p(y|D,,, X,X,)

Let's note that:

P(y] D, %,%.) = / p(y] £ (%))p(f ()| Do, )d £ (x)

If only we wouldn't condition on X,...
To circumvent the difficulty, we introduce the following constraints:

1. X, is only a local maximum,

2. f(x4) is larger than past observations,

3. f(x) is smaller than f(x,).

You can find more in Hernandez-Lobato et al. 2014.



How does it work?
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Probabilistic Frameworks



Using GPs

How do we choose a kernel and hyper-parameters?

e A common approach is by empirical Bayes
o 0* = argmaxy, p(D,|0)
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Using GPs

How do we choose a kernel and hyper-parameters?
e A common approach is by empirical Bayes
o 0* = argmaxy p(D,|0)
o afz) = Egp[U(f(2))]
o Alternatively we can be more Bayesian
o 8 ~ p(6|A)
o afz) = Epp, z[ElU(f(2))]]



Shortcomings of GPs

e Variable length scales
o non-stationary kernels

o input warping
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Shortcomings of GPs

e Variable length scales

o non-stationary kernels

o input warping
e Scalability in NV
o Naively calculating posterior predictive is O (N 3)

e Scalability with Dimensionality
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Multi-Task Bayesian Optimization

We are provided with 1" related functions, ( f1, f2, ... fr), and are interested in
optimizing one of them, f;.

We can simultaneously model all of the functions with a multi-output GP
We use the intrinisic model of coregionalization
o k((z,t),(z',t") = kx(z,z ) kr(t,t)

Matthias Seeger, Yee-Whye Teh, and Michael I. Jordan. Semiparametric latent factor models. In AISTATS,

2005.

Edwin V. Bonilla, Kian Ming A. Chai, and Christopher K. I. Williams. Multi-task Gaussian process prediction. In

NIPS, 2008.



Multi-Task Bayesian Optimization
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Transferring knowledge from other tasks, f; and f5 informs our prior over f3

We can better cope with the size of the space!

Swersky, Kevin, Jasper Snoek, and Ryan P. Adams. "Multi-task bayesian optimization." Advances in neural

information processing systems. 2013.



Bayesian Neural Nets

Short intro



Bayesian Neural Nets
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computing the posterior predictive distribution
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Bayesian Neural Nets

Let's denote by 6 parameters of out network. We are interested in
computing the posterior predictive distribution

p(y|x,Dy).

Using posterior distribution over parameters:

n

p(8|Dx) o p(8) | | p(yilxi, 6)

1=1

we have:

p(ylx,Dn) — / p(y|x, 0)p(6|D,)d6



Approximations for p(6|D,,)



Approximations for p(68|D,,)

1. Probabilistic backpropagation (PBP), Hernandez-Lobato and
Adams, 2015,



Approximations for p(68|D,,)

1. Probabilistic backpropagation (PBP), Hernandez-Lobato and
Adams, 2015,

2. Variational inference - Bayes by backprop (BBB), Blundell et al.,
2015,



Approximations for p(6|D,,)

1. Probabilistic backpropagation (PBP), Hernandez-Lobato and
Adams, 2015,

2. Variational inference - Bayes by backprop (BBB), Blundell et al.,
2015,

3. Dropout MC, Gal and Ghahramani, 2015



Comparison

2.0

L5

2

1.5

A fit of the sinc £

unction using Variational Inference

T

sincix)
BBRE

sincix)
FBP

2.0

1.5

2.0

1.5

& fit of the sinc function using Dropout

- - sincix)
—  Dropout MC

o3 =3 o1 i 1 2
A fit of the sinc function using SGHMC
- - sinc(x)
L —  Adaptive SGHMC|]




MCMC methods for p(6|D,,)



MCMC methods for p(0|D,,)

Stochastic gradient Langevin dynamics (SGLD), Welling and Teh,
2011. This is just:

0111 = 0 + Gt/2 <V logp(Ht ZVIogp xm@)) + M,

1=1

where 7; ~ N (0, &).
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MCMC methods for p(6|D,,)

Methods based on hybrid Monte Carlo - many varations.

We consider a joint system of 8 and auxiliary momentum variables, 7:

1
p(0,7|D,) x exp (— log p(0,D,,) — §rTM1r) .

Stochastic gradient Hamiltionian Monte Carlo (SGHMC), Chen et. al.
2014.



SGLD vs SGHMC




Bayesian Optimization with Hamiltonian Monte Carlo
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Springenberg et al., 2016



Bayesian Optimization with Hamiltonian Monte Carlo
Artificial Neural Networks (BOHAMIANN)

Springenberg et al., 2016

In the context of BNN, our probabilistic model takes the form:

A

p(fi(x)|x,0) = N(f(x,t;60,),0,2)

where f (x,t;6),) is the output of a parametric model with
parameters 9# and noise is assumed to be homoscedastic.
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How does it work?

We follow SGHMC algorithm to reach the posterior distribution - this
requires running a chain for a 'long' time.

At test time we use S samples 6% generated using our chain
which can be seen as samples from the posterior p(6|D,, ).
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What about acquisition function?

We managed to generate approximate samples 6; ~ p(0|D,,) from
the posterior. For the El we can obtain:

S
PP = ¢ S N(F (x,66),62)

and

Note - we can compute partial derivatives of agr with respect to X

which allows us to use standard gradient-based technigues to
maximize acquisition function!



Final comparison
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Open Questions and Problems

e Parallelization
o Non-sequential samples

e Cost sensitivity
o When we have variable cost for different queries (e.g. layer
sizes)

o Expected improvement per second

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. "Practical bayesian optimization of

machine learning algorithms." Advances in neural information processing systems. 2012.



Open Questions and Problems

e Exploration vs Exploitation tradeoff changes over time
o 'Portfolios' of acquisition functions are often the best solution.

o A meta criterion is used to pick the best solution across the portfolio

e Acquisition functions are often don't answer the questions we want to ask
o Short-sighted

o Don't consider utility of exploitation/exploration

Hoffman, Matthew D., Eric Brochu, and Nando de Freitas. "Portfolio Allocation for Bayesian

Optimization." UAI. 2011.
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Active learning

1. Contextual bandits,

2. Thompson Sampling (1933),




Active learning

1. Contextual bandits,
2. Thompson Sampling (1933),

3. Bayesian RL - Gasic et al. 2009,
Gal 2016.




Thompson sampling vs e-greedy approach
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Thank you!



